Software Defined Air Interface
- Air interface Design Paradigm Shift for 5G

Jianglei Ma

Dec. 8th, 2014
Challenges to 5G Air Interface

- Diverse QoE requirements (data rate; latency; reliability; packet size)
- Diverse capabilities for both network transmit nodes and terminals
- Diverse deployment environments & spectrum range

Single & unified air-interface for all spectrum and all use cases
Software Defined Air Interface
A Flexible AI

Traffic type, transmitting & receiving condition

Air Interface Configuration (SoftAI)

Optimized air Interface

Waveforms
- SCMA
- f-OFDM
- FBMC
- OFDM

Frame Structure
- Flexible TTI
- Flexible duplex

Multiple Access Scheme
- Scheduled
- Grant-free
- LBT

Coding Modulation
- Polar
- Turbo
- Network coding

Protocols
- Adaptive HARQ

Candidate technologies for AI building blocks

One size fits all -> AI Adaptation

- Optimized RAT for each application/use case
- Dynamic or semi-static or static configurable
- Across frequency carriers or within the same frequency carrier
- Forward compatible: easy to add unforeseeable new service/use case
- Backward compatible
AI Adaptation Example
Co-existence of Multiple AI configurations

- Spectrum Range
- Vertical Applications
- Tx and Rx Capability
- Support Legacy RAT

Static Air Interface Configurations

- Spectrum dependent WF, TTI
- Pre-defined customized AI
- Subset AI for low cost node / device
- Subset AI for legacy UE

Data

Traffic/QoE classification

QoE/traffic characteristics provisioning from network

Selected AI options

WF, MA, TTI, Protocol selector

data transmitted with option 1
data transmitted with option 2
data transmitted with option N

Content-aware Dynamic configuration
Flexible Waveform

Issues of Existing OFDM Waveform

- OFDM waveform is not flexible
- OFDM waveform is not spectrum localized
- OFDM waveform cannot support asynchronous operation
Frequency Localized Waveforms
Subband Filtered OFDM (f-OFDM)

- f-OFDM: Sub-band digital filter is applied to shape the spectrum of subband OFDM signal.
 - Good out-of-band leakage rejection
 - Maintain all the benefits of OFDM
 - M-MIMO friredly
 - Fragmental spectrum utilization
Flexible Time-frequency Lattice

- Co-existence of different time-frequency granularities
- Waveform optimized for different transmission condition and applications
- Regional broadcasting, high speed train, fixed devices,……
- Subband spectrum filter to control inter-block interference
Enable Single Waveform for All Applications

Unified Air Interface to Support Different Waveform / Multiple Access Schemes / Flexible TTI
f-OFDM Supports Asynchronous OFDMA

- Support asynchronous OFDMA/SC-FDMA transmission
- Robust to frequency and timing mismatching
- No timing advance signal needed
A new frequency domain non-orthogonal waveform
SCMA codewords are carried by f-OFDMA tones
SCMA codebook based on Multi-dimensional Lattice Constellation to exploit shaping gain and coding gain
• Each UE/layer stores a unique codebook
• Binary input data is mapped to a codeword of the corresponding codebook
• Low PAPR and low projection codebooks possible
SCMA Benefits/Applications
Massive Connectivity, Spectrum Efficiency Enhancement, Ultra Low Latency; Energy Saving

Orthogonal multi-user multiplexing
- Scheduling required to maintain the orthogonality
- ~100 ms delay due to state transition and request-grant procedure (UL)
- Signaling overhead for small packet transmission

Non-orthogonal multi-user multiplexing
- Support signal superposition
- Better coverage
- High multi-user detection complexity
- Limited number of concurrent Users

Overloaded multi-user multiplexing
- Less collision even with overloaded concurrent Users
- Low multi-user detection complexity
- Low latency (<1 ms) due to grant free access
- 0 dB PAPR for MTC
- Long battery life
- Better coverage with scalable SCMA codebook design

Non-active tone
SCMA Benefits/Applications

SCMA OL MU Transmission & CoMP

UL MU MA (SCMA codeword division multiple access) with blind detection

OL CoMP (Multi-TP SCMA layer & power based coordination)

DL Open-Loop MU MA (SCMA layer & power allocation)
Conclusion

• Software configurable air interface
 • Flexible air interface to meet 5G requirements
 • Co-existence of different air interface configurations
 • Optimized for different services and different applications
 • Backward compatible & Forward compatible

• f-OFDM enables flexible waveform
 • Basic waveform for 5G
 • Co-existence of different waveforms, multiple access schemes and different TTls

• SCMA is a basic non-orthogonal multiple access scheme for 5G
 • Massive connectivity
 • Flexible multi-transmitter resource sharing to enable UE centric access
THANK YOU

www.huawei.com

Copyright©2014 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.