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Abstract

This paper presents MIMO-OFDM channel estimation
for spatially correlated channels using frequency domain es-
timation techniques. First, the exploitation of spatial cor-
relation on further improving the channel estimates is in-
vestigated. It is observed that spatial filtering provides ad-
ditional gain when the spatial correlation and the number
of antennas are high. For example, in a system with 16
transmit antennas, the use of additional filtering in spa-
tial domain improves the performance of mean square er-
ror (MSE) by 2 dB and that of BER by 0.5 dB, when spa-
tial correlation is around 0.9. Then, equivalence between
channel power delay profile (PDP) parameters and param-
eters extracted from subspace methods in frequency domain
is demonstrated. This has the advantage of improving the
performance of the channel estimation in frequency domain.

1. Introduction

Future wireless systems require high data rates. Con-
ventional systems are limited by inter-symbol-interference
(ISI) due to frequency selectivity of the wireless channel.
By sending information in parallel with larger symbol dura-
tions, OFDM systems avoid the ISI significantly [2].

The data rate can be further increased via the exploitation
of the MIMO technique. MIMO offers additional parallel
channels in spatial domain to boost the data rate. Hence,
MIMO-OFDM is a promising combination for the high data
requirement of future wireless systems [6].

Coherent demodulation of the transmitted symbols re-
quires accurate channel estimation. MIMO-OFDM channel
estimation can performed in frequency and/or time domains.
In frequency domain, channels at each OFDM subcarrier are
estimated [2]. In time domain estimation, the unknowns are
the channel length, tap delays, and their corresponding co-
efficients [8].

Channel estimation methods can be improved by using

the side information [7]. In OFDM systems, the side infor-
mation can be the correlation due to the time evolution of the
channel, the correlation between channel taps and OFDM
subcarriers [2], [7]. Many studies exploited time and fre-
quency domain correlation to get the advantages of both do-
mains [6]. With MIMO, correlation from spatial domain ex-
ists. Spatial correlation arise due to close antenna spacings
and poor scattering environments. Since channel impulse re-
sponse between co-located transmitter antennas experience
the same delay to a receiver point, channel taps correspond-
ing to the same time delay will have the spatial correlation,
which can be utilized via some filtering as it is done with the
frequency/time domain correlation.

In this paper, first, spatial filtering is explored to further
refine the estimates in frequency domain. Then, a relation
between channel power delay profile (PDP) parameters and
parameters obtained via subspace methods in frequency do-
main is derived. This relationship has potential applications
on estimating the PDP parameters more efficiently as well
as improving the performance of frequency domain MIMO-
OFDM channel estimation. Potential improvements are the
development of less complexity low-rank frequency domain
MIMO-OFDM channel estimation techniques, and more ac-
curate estimation of frequency domain channel correlation
matrix due to the availability of many MIMO channels with
the same PDP.

2. System Model

The system model is given in Fig.1. A MIMO-OFDM
system with Ntx transmit and Nrx receive antennas is as-
sumed. The system has K subcarriers in an OFDM block,
and another Ko subcarriers are added as a guard band, also
known as cyclic prefix (CP). The incoming bits are modu-
lated to form Xi[n, k], where i is the indexing for transmit
antenna, n is the OFDM symbol number, and k is the sub-
carrier. For each modulated signal, an Inverse Fast Fourier
Transform (IFFT) of size K is performed, and the CP is
added to mitigate for the residual ISI due to previous OFDM
symbol. After parallel-to-serial (P/S) conversion, signal is
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Figure 1. MIMO-OFDM transceiver model.

transmitted from the corresponding antenna. The channel
between each transmitter/receiver pair is modeled as multi-
tap channel, whose delay characteristic is assumed to be the
same for all available channels. The channel is expressed as

h(t, τ) =

L−1
∑

l=0

αl(t)δ(τ − τl), (1)

where L is the number of taps, αl is the lth complex path
gain, and τl is the corresponding path delay. The path gains
are wide-sense stationary (WSS) complex Gaussian pro-
cesses generated via the method in [5]. It is assumed that
different paths are uncorrelated. The frequency response of
the channel is given by,

H(t, f) =

∫ +∞

−∞

h(t, τ)e−j2πfτdτ. (2)

For OFDM systems with proper CP and timing, the channel
frequency response can be written as [4],

H[n, k] = H(nTf , k∆f) =

L−1
∑

l=0

h[n, l]F kl
K , (3)

where h[n, l] = h(nTf , kTs/K), FK = e−j2π/K , Tf is
the block length, ∆f is the subcarrier spacing, and Ts is the
symbol duration.

At the receiver side, first serial-to-parallel (S/P) conver-
sion is performed and the CP is removed. After FFT opera-
tion, the received signal can be expressed as,

Y q[n, k] =

Ntx
∑

i=1

Hi[n, k]Xi[n, k] + wq[n, k], (4)

where q denotes the receiver antenna indexing and w is the
additive white Gaussian noise (AWGN).

3. Spatial Filtering

Comb type pilots are commonly used in MIMO-OFDM
channel estimation [7]. These have the advantage that the
received signal at a given subcarrier is free-of-interference
since other transmit antennas are silent when one of the an-
tenna transmits at a given subcarrier. The channel estima-
tion at the silent subcarriers are obtained through interpo-
lation techniques [1]. In this paper, the estimation is per-
formed over 2-OFDM symbols, over which the channel is
assumed to be constant. For a better interpolation, the pi-
lots are cyclically shifted by the amount of Ntx/2. With this
pilot scheme, the summation in the expression (4) can be
removed. Moreover, the q index can be dropped by concen-
trating only to a single receive antenna.

3.1. Estimation Method

The pilot grid in frequency and spatial axes puts the prob-
lem in a two-dimensional (2-D) domain. By stacking up all
the equations, and putting the transmit signals to the diago-
nal element of a square matrix (K×K), the received signal,
Y(K × 1), can be written as

Y = diag(X)H + W (5)

where diag(X)(K × K) are the transmitted symbols,
H(K × 1) represents the unknown channel gains, and
W(K × 1) is the uncorrelated AWGN with zero mean
and σ2

n variance. The linear minimum mean square er-
ror (LMMSE) estimation of the above equation is the well-
known Wiener filtering, and is given by

Ĥ = RHYR
−1
YYY (6)

and the mean square error (MSE) is given by,

MSE = K − Tr
[

R
H
HY R

−1

Y Y RY H

]

, (7)



where RPQ is the correlation between the variables P and
Q, Tr(.) denotes the trace of a matrix, and (.)H represents
the conjugate-transpose. The MSE expression given above
is smaller with the larger the two-norm of RHY [3]. In
case of no-spatial correlation, RHY will be block-diagonal,
and the elements representing correlation between subcarri-
ers across antennas will be zero. With spatial correlation,
these elements will be non-zero. Hence, it is expected that
the use of 2-D Wiener filtering will give better results. Since
Wiener filtering in 2-D is computationally complex [3], two
cascaded Wiener filters are preferred.

The Wiener filtering requires initial estimates of a set of
subcarriers that can be obtained via least squares (LS) esti-
mation, ĤLS . Let Pi (1×Np) be the set of pilot subcarriers
of antenna i. The received signal at subcarriers p ∈ P

i is

Yp = diag(Xi)pH
i
p + Wp. (8)

Then, the LMMSE estimation can be expressed as [2]

Ĥ
i
lmmse = RHHp

(RHpHp
+ β/SNR)−1

Ĥ
i
LS , (9)

where RHHp
is the frequency domain channel correlation

matrix between all subcarriers and pilot subcarriers, RHpHp

is the correlation between pilot subcarriers, SNR is the
signal-to-noise ratio, and β = E{|xk|

2}E{1/|xk|
2}.

3.2. Channel Estimation in Spatial Domain

It is essential that the spatial correlation between antennas
be translated to the subcarriers correlation in spatial domain.
The time domain channel is described in terms of taps, and
it is further assumed that the channel delays are the same for
all available channels between transmit/receive pair. This
is not an unrealistic assumption since the transmitter or re-
ceiver antennas are co-located.

Due to the existence of spatial correlation, complex chan-
nel gains, αi

l(t)s in (1) are spatially correlated across anten-
nas. For the sake of simplicity, only transmitter antennas are
assumed to be spatially correlated. Let the spatial correla-
tion between ith and jth transmit antennas be ρij . It can be
shown that OFDM subcarriers across antennas will have the
same spatial correlation, i.e. E

{

Hi[k](Hj [k])H
}

= ρij ,
assuming that the taps for a given channel are temporally
uncorrelated. Hence, spatial correlation can be exploited in
frequency domain channel estimates without transforming
the estimates to the time domain. LMMSE estimation in
spatial domain can then be applied to each subcarrier. For a
given subcarrier,

Z
k = Rs(Rs + β/SNR)−1

Ĥ
k
lmmse (10)

where Z
k is the channel estimates for the kth subcarrier

across spatial domain, Rs is the spatial correlation matrix,
and H

k
lmmse is the frequency domain LMMSE channel esti-

mate for the kth subcarrier.
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Figure 2. MSE over 2-OFDM symbols.

4. Equivalence Principle

In MIMO-OFDM, the frequency domain estimation tech-
nique has to carry the matrix inversion of large matrices
(see. Eq. 9). Low-rank approximation methods utilizing the
singular value decomposition (SVD) of frequency domain
channel correlation matrix are available to simplify (9) [2].
Here, it will be shown that unitary matrices obtained from
SVD operation are the unitary FFT matrices, and the singu-
lar values are related to the PDP samples via FFT size. This
relationship is given below.

The channel frequency response is the FFT of the impulse
response, i.e., H = Fh, where the entries of F are given by
F kl

K . The autocorrelation of the frequency domain channel
is given by E{HH

H}. Hence,

E
{

HH
H

}

= E
{

Fh(Fh)
H

}

. (11)

Denoting RHH = E{HH
H} and Rhh = E{hh

H}

RHH = FRhhF
H (12)

Since F is a full-rank matrix, the rank or the number of
non-zero singular values of RHH are determined by the rank
of Rhh. If there are only L number of uncorrelated channel
taps, then the rank of Rhh is L. Consider the SVD of the
channel correlation matrix. It can be expressed as,

SV D{RHH} = UΣV
H, (13)

where U and V are orthonormal basis matrices, and Σ is a
diagonal matrix with the singular values. Since the rank of
RHH is L, there are only L number of non-zero singular



values. With RHH being a K×K matrix, the size of U and
V

H are both K × K. Hence (12) can be written as,

UΣV
H = FRhhF

H (14)
= FuKRhhFu

H , (15)

where Fu denotes the normalized FFT matrix, i.e. each col-
umn has a unity norm. Hence

U = ±Fu = V (16)
Σ = KRhh, (17)

provided that the power delay profile is non-sparse. In a
sparse channel, care must be taken in the SVD process. Sin-
gular values from SVD do not give the information about the
tap order. However, since U = Fu, the time delay informa-
tion can be extracted from U matrix. With this equivalence
principle, less complexity low-rank methods in frequency
domain can be developed using unitary FFT matrices, which
is an ongoing research.

5. Results

A QAM-4 modulated MIMO-OFDM system with 64
subcarriers is considered. An exponential channel delay pro-
file with τrms = 2µsec is assumed. The channel length is
taken to be 5, so is the length of CP. A circular arrays is
considered with a pre-defined correlation values for trans-
mit side. The MSE of the estimated channels are obtained
and is shown in Fig. 2. As can be seen the performance of
the estimation is improved with spatial filtering. BER results
are shown in Fig. 3. It is seen in the zoomed graph that with
0.9 correlation, a gain of 0.5 dB is possible in 16 transmit
antenna system. Although not shown here, with correlation
values less than 0.85, no gain is available. Besides, the gain
reduces as the number of antennas decreases.

6. Conclusion and Discussion

The effect of spatial filtering in the channel estimation
of MIMO-OFDM systems is investigated. First, frequency
domain correlation is utilized through LMMSE filtering in
frequency domain. This is then followed by spatial domain
LMMSE filtering. Simulation results show that additional
spatial filtering provides 0.5 dB gain in BER performance of
a MIMO-OFDM system with 16 transmit antennas and 0.9
spatial correlation. Higher gain is possible with more anten-
nas and spatial correlation. Moreover, equivalence between
channel PDP parameters and the parameters from frequency
domain subspace methods is presented. Since in MIMO-
OFDM systems all available channels have the same PDP,
correlation matrices needed in frequency domain LMMSE
filtering can be obtained more accurately in a shorter time,
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Figure 3. MSE vs. spatial correlation.

and the corresponding low-rank channel estimation algo-
rithms can be further simplified using the equivalence prin-
ciple. Hence, MIMO-OFDM channel estimation can be per-
formed only in frequency domain.
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