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Abstract

In this paper joint estimationof the optimal threshold,synchronizationpoint, and integration intenal is
developedfor ultrawideband(UWB) enepgy detectorsemplg/ing on-off keying (OOK) modulation.Gaussian
approximationof the receved signal statisticsis shavn to enablelow compleity solutionsat the expenseof
someperformancedegradation.The performance®f the optimal and suboptimalsolutionsare evaluatedand
comparedlIt is shavn thatexplicit BER minimizationis requiredfor parametepptimization.Using simulations,
numberof training symbolsrequiredto converge to ideal parametelestimatess demonstratedo be increasing
with increasingSNR.
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I. INTRODUCTION

Enegy detectoiis anon-coherenapproacHor ultrawvideband UWB) signalreceptionwherelow complexity
receverscanbe achieved at the expenseof someperformancedegradation[1]. As opposedo more complex
RAKE recevers,estimationof individual pulseshapespathamplitudesanddelaysat eachmultipathcompo-
nentis not necessaryor enegy detectorsMoreover, enegy detectorsaarelesssensitve againstsynchronization
errors[2], and are capableof collectingthe enegy from all the multipathcomponents.

On-off keying (OOK) is oneof the mostpopularnon-coherenmodulationoptionsthat hasbeenconsidered
for enepgy detectorsOOK basedmplementatiorof enegy detectorss achieved by passinghe signalthrough
a squarelaw device (suchas a Schottly diode operatingin square-rgion) followed by an integrator and a
decisionmechanismwherethe decisionsaremadeby comparingthe outputsof the integratorwith a threshold.
Two challengingissuesfor the enhancementf enegy detectorrecevers are the estimationof the optimal
threshold,and the determinationof synchronization/dumpoints of the integrator

The effect of integration interval on the systemperformancehas beenanalyzedbefore for enegy detec-
tors [1], [3]. However, to our bestknowledge,optimal joint selectionof the integration startand stop times,
and the thresholdis not coveredin the literature. In this work, our contritutions are as follows: 1- We
addresghe optimal joint parameterselectionusing the bit error rate (BER) expressionswith exact analysis
and Gaussiamapproximation(GA), and shov that GA works well only at large bandwidths,2- We definea
framework for synchronization/dumpypothesesith differentsamplingoptions,3- When an exact analysis
is consideredusing the GA for calculating the thresholdyields very small performancedosses,and can be
consideredsa practicalalternatve for exactthresholdevaluation,4- The parameteestimatiorrequiresexplicit
BER minimization (ratherthan SNR maximization)sincethe statisticscorrespondingo differentbits are not
identical, 5- The numberof training symbolsrequiredto corvergeto the ideal parameterestimatess shovn
to be lessthanone hundredfor practicaloperatingscenarios.

The paperis organizedas follows. In Sectionll systemmodel for an UWB systememploying OOK
is presentedOptimum selectionof integration intenval start/stoptimes, and the thresholdis addressedn
Sectionlll, exact and Gaussiarapproximationmethodsfor BER evaluationare analyzedin SectionlV, and
the numericalresultsare presentedn SectionV.
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Fig. 1. Parameterestimationand symbol detectionin block-fading channelmodel

Integration Start & Stop Threshold
_ Mypotheses  Estimation
v(1)
HU@VD) f IR
: u(l)
v(2) :

20 — H{u(2).v(2)} — - &, _ argmin(BER)  [Uopt - ¥pt fopt
. u(2) ; ] v
I : : . 1 :

: : . : . .
: i v(N) 3

L HUN)VN)} / —"— &
: : u(N) :

Fig. 2. Block diagramfor the proposedoint parameteestimationfor enegy detectorrecevers.

Il. SYSTEM MODEL

Let the impulseradio (IR) basedUWB signal receved for bit 4 in a multipathenvironmentbe represented
as
L
T‘,’(t) = Z’Ylbiwl (t — T — ZTS) + n(t) , (1)
=1
whereL is the numberof multipathcomponentsarriving at therecever, [ is tapindex, b; is theith transmitted
bit with OOK modulationw;(t) is the receved pulseshapefor thelth path,v; andr; arethefadingcoeficient
andthe delay of the /th multipathcomponentyespectiely, and T is the symbolduration.The additive white
Gaussiannoise (AWGN) with double-sidednoise spectraldensity Ny /2 is denotedby n(t). The receved
signalis passedhrougha bandpasdilter of bandwidthB to capturethe significantportion of signalspectrum
while remaving out-of-bandnoiseand interferencefesultingin 7(¢). For the sale of simplicity, we consider
single pulse per symbol; however, the discussionin the sequelalso (generally)appliesto multiple pulsesper
symbol. The following decisionstatisticis usedto make a symbol detectionby sensingif thereis enegy or
not within the symbolinterval

1
hi = /T FOPar2 € ()

whereT; is theintegrationwindow definedby synchronizatiormanddumppoints(u, v), andthe symboldecision
is performedby comparingh; with a threshold¢. Observing(2), it is seenthat optimal (joint) estimationof

(u,v, ) tupleis of critical importancefor the performancef enegy detectorsaswill be discussedhroughout
the restof this paper

I1l. OPTIMUM JOINT PARAMETER SELECTION

Wirelesscommunicatiorsystemgaypically requirethe estimationof channel-relategharametergor optimal
demodulationof received symbols. Since channelcharacteristicchangein time, the parameterestimation



has to be tracked and/or repeatedevery oncein a while; how often the parameterestimationhas to be
repeateddependson the coherenceime of the channel.A commonly usedmodel for UWB channelsis a
block fadingchannelmodel[4], wherethe channelis assumedstationarywithin a specificblock (e.g.for 200
microsecond$5]), and differentchannelrealizationsare consideredor differentblocks. Therefore the radio
channelcharacteristicvary in the long-term,andthey may be assumedstationaryin the short-term.
Sincethe optimal parameterdgor an enegy detectorwill vary for differentchannelrealizationsa recever
designthat optimizesthe performancefor a particularchannelrealizationis neededAs illustratedin Fig. 1,
the parameter<an be estimatedat the beginning of eachblock, and then be usedfor demodulationof the
symbolsfor the rest of the block. The proposedadaptie recever, which takesinto accountthe changesn
the channel,is shavn in Fig. 2. In this recever, the received signalis first amplified, band passfiltered, and
squaredThen, differenthypothesesor (u,v) areconsideredandthe correspondinghresholdis estimatedor
eachhypothesisin this section,first, issuesrelatedto obtainingthe integrator start/stophypothesewill be
discussedThen, exact and Gaussiarapproachesgor thresholdestimationwill be presented.

A. Obtainingthe (u,v) Hypothesesvith Different SamplingApproaces

When implementingan enegy detectoy specifying an integration interval that sacrificesthe insignificant
multipath componentsn order to decreasehe collectednoise enegy will improve the performance.br a
betterperformanceit is also requiredthat the recever synchronizeswith the starting point of the multipath
enegy. Therefore,the optimal interval, which minimizesthe BER, can ideally be achieed by a joint and
adaptve determinationof the startingpoint and durationof integration.

Let u(k) andv(k) denotethe startingand dump points of the kth hypothesisyespectiely. Granularity of
the (u(k),v(k)) pair dependson the samplingrate, and they may be obtainedusing different architectures.
Below we presentthree corvenientways of obtainingthe start/stoppointsfor the multiple hypothesis:

1) Multiple parallel integrator branches: Eachbranchhasa differenttime constantand hencea different
length of integration interval. Integration starting points are adjustedusing delay elements.The integrator
outputsare sampledat a symbol-spacedate, and the effective granularityis 75 /N, where N is the number
of integrators.The disadwantageof this approachis the large numberof integratorsthat may be required.

2) Singleintegrator with high samplingrate: The high-ratesamplingat a rate T; /N enablesdetermining
the enepy in finer resolution.The startingand stop pointsare selectedby combiningthesesampleenepiesin
sucha way to yield the optimumtotal enegy. The dravback comparedwith otheroptionsis the requirement
of a high speedanalogto digital corverter(ADC). Multiple parallel ADCs may alsobe consideredo increase
the samplingrate.

3) Singleintegrator employingtraining sequences:Training sequencesonger than usual enabletesting
different integration intervals in a sequentialmanner Symbol-ratesampling of the integrator is sufficient.
However, sincelarge numberof training symbolsare requiredto increasethe samplingrate, the coherence
time of the channelshouldbe sufficiently long. On the other hand, since symbol-ratesamplingwill be used
in the symbol demodulatioranyway, this is the leastcomplex implementatiorof the recever.

Note that increasingthe rate at which the output of the integrator is sampled,in effect, increasesthe
‘integrationtime resolution’ of the recever and enhanceshe likelihood of obtaininga lower BER. However,
this comesat the expenseof additional hardware complexity. On the other hand, high samplingratesare
requiredonly whenestimatingthe integrationstart/stopimes,andsymbol-spacedamplingis sufficient during
symboldetection Neverthelesswe assumen the sequethatusingoneof theabove approachegheintegration
start/stophypothesishecomeavailable to the recever.

A sub-optimalsolution,wherethe initial point of the received signalis taken asthe commonstartingpoint
for all possibleintegrationdurations,yields very closeperformanceo the optimal case whenthe power delay
profile (PDP)of the channelrealizationis exponentiallydecaying.For example,the channelmodelCM1 in [4]
reflectssucha minimum phasescenariowheresingle synchronizatiorpoint performsaswell. For dispersive
channelg(suchas CM4) however, therewill be someperformancedegradation.



B. ThresholdSelectionUsing Exactand GaussianAnalysis

The exact optimal thresholdg,(cE) can be calculatedusing the centralizedand non-centralizedChi-square
distributions,correspondingo bits 0 and1, respectiely, andwherek denoteghe hypothesisumber However,
this requiresa searchover possiblethresholdvaluesin orderto find the onethat minimizesthe BER, or, high
signalto noiseratio (SNR) assumptiorin orderto useasymptoticapproximationof the Besselfunction (which
still yields a thresholdestimatebasedon tabulateddata)[6]. Relying on the factthatthe normalizedthreshold
for practicalSNR valuesfalls in between).25 and0.5 [3], in orderto decreas¢he computationatomplexity,
we considerherea serial searchfor g,‘f) in the range (M Ng + 0.5Ey, M Ny + Ey), where M is the degree
of freedom(DOF) definedby 2M = 2BT; + 1, and E is the averageenegy of bits 0 and 1, bit 1 having an
enegy of 2F;.

By approximatingthe Chi-squaredistributions with Gaussiandistributions (which becomesmore valid
for large DOF), the thresholdestimatesg,(f) can be obtained(as an approximationto §,(€E)). Even though
these estimatesare suboptimal,they can be obtained easily without requiring ary searchover possible
thresholdvalues. Let the meansand variancesof the Chi-squaredistributions for bits 0 and 1 be given
by po.k, 061, w1k, andoi , respectiely, where

Hor = MNg (3
oo = MNG (4)
Mk = MNy+2E, 5)
ol = MN§+4EN, . (6)

The thresholdestimateusing the Gaussiamapproximationis locatedat the intersectionof the two Gaussian
distributions, which can be evaluatedfrom

(G) _ 2 _ #(G)y2
exp (_ (Ek 203#:,1@) ) exp (_ (l‘l,;g;z ) )

\ /271'(73’,c - \ /271'(7%,c @
Taking the naturallogarithmof both sidesand rearrangingthe terms,one obtains
Cl D) + 0D +Cs =0, ®)
wherethe coeficientsare given by
€= U%,k - Jg,k ) 9
Co = —Q(Mo,wik - Ml,kffg,k) ; (10)
Cs = U%,k/”(z),k - U(Z),kﬂik - QUg,kU%,kln (2—:2) ) (11)

with (8) being a secondorder polynomial equationthat can be easily solved for §,EG) (only one of the roots
is appropriate)ielding

—Cy + /CZ—4C;C5

EOPt = 201 (12)

As an alternative to using frequenttraining symbols, the thresholdcan be updated(tracked) in a decision-
directedmanneronceit is initially estimatedn a similar way to a data-aidecchannelestimation [7].
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IV. BER PERFORMANCE EVALUATION

We considetthreedifferentapproachefor evaluatingthe BER of theenepgy detectorreceversassummarized
in Fig. 3. Dueto the square-lav device usedin the recever, the decisionstatisticsin an enegy detectorhave a
Chi-squardistribution. First, we considerthe exact statistics andevaluatethe BER expressionsasavailablein
the literature.However, we considerthe thresholdusingboth the exact approach(usinga searchover possible
thresholdvalues)andthe Gaussiarapproximation(usinganalyticalexpressionobtainedin previous sections).
Later, we considerthe BER evaluationusing the Gaussiarapproximationof the Chi-squarestatistics.

A. ExactBER Performances

When the exact Chi-squarestatisticsof the receved signal are considered the BER obsened for each
hypothesiswhen using a serial searchor a Gaussianapproximationfor thresholdestimationare denoted
by P(E) (k, f,(cE)) and P(E (k, g(G)) respectiely. Using the exact expressionsthe BERs employing either
thresholdare given by

P (k,&) = P (011) + P (100) (13)
(B) _ [AEy  [2¢,
Pk,Ek (0|1) =05-0.5Qm ( TO’ FO > (14)
N M—-u
P® (1 (& /No) 15
ke (110) = Zp M—utl)’ (15)

where Q) is the generalizedMarcum- @ function of order M, andT'(x) is the Gammafunction equalto
(z — 1)! for z integer. The optimum integrator parametersare the onesthat minimize the BER, i.e.

(uophvopt;é-apt) = a‘rgmin (P[;(E) (kafk)) - (16)
u(k),v(k),§x

As analternatve to minimizing the BER, onemay considetto maximizethe SNR (which haslesscomplexity
sinceno BER expressionsare evaluated).However, the definition of SNR is critical in enegy detectorsOne
may definethe SNR to be theratio of the squareof the mean-shiftdueto the existenceof signalto the output
noisevariancewhensignalis present8], which is expressedas
SNR = (“1”“_27“0”“)2

01,k

4E?
M NZ +4EyNo ’

andthe parametershat maximize(17) canbe selectedHowever, notethat (17) doesnot accountfor the noise
statisticswhen signal is not present,and thus doesnot capturethe whole picture. This is as opposedto a
coherentsystem,where noisestatisticscorrespondingo both bit-0 and bit-1 are identical, and maximization
of the SNR implies the minimization of the BER.

(17)
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Fig. 4. Bit errorratevs. E /Ny for CM1 (BW = 500MHz and 2GHz cases)for both Gaussiamapproximatedand exact threshold
estimates.

B. BER Using the GaussianApproximation
For theoreticalpurposesan approximateBER formulation that gives a feasibleestimatefor P, (k, &) is

given by
(@) (@)
1 — —
PO k,67) = 5Q <ﬂ> +5Q (’“’“7> . (18)

90,k 1,k

Sincethe Chi-squarestatisticscan be approximatedvith a Gaussiarfor large degreeof freedomsthe above
expressionis expectedto approximatethe BER at large bandwidths,or large integration intervals. It is also
valid for systemsthat uselarge numberof pulsesper symbol.

V. NUMERICAL RESULTS

Computersimulationsare doneto analyzethe performance®f the proposedapproachesisingthe channel
modelsin [4]. To be more specific,in thesesimulationsthe enegies correspondingo the differentchannel
realizationsand parameteisetsare evaluated,and usedin the BER expressions.

In Fig. 4, the BERs obtainedusing the three different performanceanalysisapproachegshovn in Fig. 3)
arecomparedor B = 0.5GHz and B = 2GHz. While the Gaussiarapproximationfails to yield closeresults
to the exact expressionsfor B = 0.5GHz, we seethat the approximationerror decreasess the bandwidth
increasesOn the other hand,for both bandwidthspractical estimationof the thresholdusing the Gaussian
approximationyields very close resultswith the exact threshold(which hasto be calculatedafter a serial
search)Hence,the GA thresholdcanbe employed to decreasehe computationakcomplexity.

Another obsenation is that the optimum integration interval changessubstantiallyfor different channel
models,implying the fact that significant gains can be obtainedfor a mobile device when the integration
interval is adaptvely determinedBoth the BER minimizationand SNR maximizationapproacheareemployed
to find the optimumintegrationinterval. The resultsare shavn in Fig. 5 andin Fig. 6, respectiely. Although
the resulting curves have a similar behaiour, the optimum integration intervals determinedby the SNR
maximization approachturn out to yield higher BERs than the onesfound with the BER minimization.
Therefore,we concludethat minimizing the BER is favorableto maximizing SNR despiteits computational
compleity.

INote thatif morethenonepulseis usedper symbol,andthe pulsesare combinednon-coherentlythe numberof pulsescanbe folded
into the integration intenal, implying that the decisionstatisticsapproachto a Gaussiardistribution
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Fig. 5. BERvs. Integrationintenal for differentchannelmodels(at E;,/No = 10dB and 20dB).
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Fig. 6. SNRyvs. Integrationintenal for differentchannelmodels(at E; /No = 20dB).

In Fig. 7, the variation of the optimal integration interval with respectto E;/N; is plotted for different
channelmodels. It is obsened that the line-of-sight (LOS) componentof CM1 vyields a parallel variation
with CM2. On the otherhand,CM3 and CM4 also exhibit a parallelbehaiour andthey have larger optimal
integration values(and slopes)due to the more spreaddistribution of their multipath componentver time.

In Fig. 8, we comparethe BER performancef a non-adaptie recever and the proposedrecever. The
non-adaptre recever is assumedo have a fixed integrationinterval of 20ns,which is a reasonableluration
consideringthe optimum valuesfor different channelmodelsgiven in Fig. 7. The resultantBER curves
are presentedor CM1 and CM4. The performanceof the proposedrecever is betterthan the non-adaptie
recever with an appropriatelyselectedfixed integration interval by approximatelyl dB. In the samefigure,
the synchronizatioreffect is alsoillustrated. Synchronizatioris achiezed by having the recevver synchronize
itself with the startingpoint of the optimum integration interval ratherthan the initial multipath component.



It is seenthat the effect of synchronizatioris negligible for CM1 and very slight for CM4.

In the previous simulations, perfect parameterestimatesfor (3)-(6) were considered.Another analysis
investigateshow the numberof training symbolsaffects the parameterestimationand, as a result, the BER.
This is an analyticalexaminationratherthana simulation,andtherefore practicalchannelrealizationsare not
consideredIn Fig. 9, the BER vs. numberof training symbolscurves are plotted at different E}, /Ny values.
Theseresultsare obtainedby taking sampledrom the centralizedand non-centralizedChi-squaredistributions
of bit-0 andbit-1, respectiely. Eachsamplecorrespondgo a training symbol transmitted. Obviously, taking
more samplesyields a betterestimatefor the symbolenegy. A significantconclusionthat canbe drawvn from
this figure is that as E; /N, increasesthe numberof training symbolsrequiredto corverge to the optimum
BER increasesas well. The reasonfor this fact is that as the signal enepy rises, the probability density
function for bit-1 becomedroaderandhence moresamplesarerequiredfor a moreaccurateestimation.The
theoreticaloptimum BERs are alsoindicatedon the figure. Note that theseBERs are differentfrom the ones
shawvn in Fig. 5. This is becausen this analysis,the entire symbol enegy is consideredratherthanonly the
enegy confinedto the integrationinterval.

VI. CONCLUSION

In this paper the need for the joint adaptationof the integration interval, optimal threshold,and the
synchronizatiorpoint (for certainchannels)is demonstratedEven thoughthe Gaussiamapproximationdoes
not leadto a correctBER evaluation,it closely approximateshe exact thresholdvalues.SNR maximization
is shavn to yield suboptimalparameteestimatescomparedo BER minimization.
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