Future Mobile Standardization

3 Dec 2012

Sungho Choi, Ph.D.
Samsung Electronics
3GP SA Plenary Vice Chairman
Ongoing LTE Commercialization

- 351 Operators in 104 Countries are investing in LTE
- 105 LTE Commercial LTE Networks Launched in 48 Countries

[Source: GSA, Global Mobile Suppliers Alliance, 2012.10]
LTE: Fast Market Growth

- 100 LTE Commercial Launches within 3 years of the first launch
 - WCDMA took longer than 4 year for 100 commercial launches
- 100M LTE Subscribers within 3.3 year expected

[Source: DoCoMo, 2012.11]

[Source: Samsung, 4G World Key Note Speech, 2012.10]
Timely LTE devices for early market development

- 1st Pre-Commercial LTE Dongle (GT-B3710, for TeliaSonera, Dec 2009)
- 1st Commercial LTE Dongle (GT-B3730, for TeliaSonera, Jun 2010)
- 1st LTE Handset (SCH-R900, for Metro PCS, Sep 2010)
3GPP Technologies

- 3GPP has developed GSM, UMTS, HSPA and LTE standards
- WCDMA/HSPA is known as 3G, LTE/LTE-A is known as 4G mobile technologies
3GPP as the global standards body

- **3GPP is a Partnership Project**
 - 6 Regional standards organizations and 13 Market representing partners
 - 390 individual member companies from 39 countries

![Graph showing participation by region with Asia at 40%, EMEA at 41%, and Americas at 19% with June 2012 data]

![Image of 6 Organizational Partners and 13 Market Representative Partners]
3GPP Technology Roadmap

- 3GPP technologies are based on CDMA and OFDMA technologies
 - WCDMA and HDPA are based on CDMA
 - LTE is based on OFDMA
3GPP Core Network Evolution

- 3GPP Network has evolved from 4 tier architecture to 3 tier architecture
3GPP WCDMA/HSPA Evolution

- AMC and HARQ are the key technologies for HSDPA & HSUPA
- MIMO, 64 QAM and multi-carrier are the key technologies for HSPA & HSPA+

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rel-99</td>
<td>Rel-4</td>
<td>Rel-5</td>
<td>Rel-6</td>
<td>Rel-7</td>
<td>Rel-8</td>
<td>Rel-9</td>
<td>Rel-10</td>
<td>Rel-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rel-99 WCDMA
- DL: WCDMA (5MHz) 2Mbps
- UL: WCDMA 768 kbps

Rel-5 HSDPA
- DL: HSDPA AMC, HARQ 14 Mbps
- UL: NA 768 kbps

Rel-4 WCDMA
- DL: TD-SCDMA 2Mbps
- UL: TD-SCDMA 768 kbps

Rel-6 HSDUA
- DL: MBMS 14 Mbps
- UL: HSUPA HARQ, AMC 5.7Mbps

Rel-7 HSPA
- DL: 2x2 MIMO or 64 QAM 28 Mbps
- UL: 16 QAM 11.5 Mbps

Rel-8 HSPA+
- DL: 2x2 MIMO/64QAM or 2-carriers (10MHz) 42 Mbps
- UL: NA 11.5 Mbps

Rel-9 HSPA+
- DL: MIMO/64QAM/10MHz Dual band Dual-cell 84 Mbps
- UL: 2-carriers (10MHz) 23 Mbps

Rel-10 HSPA+
- DL: 4-Carriers (20MHz) 168 Mbps
- UL: NA 23 Mbps

Rel-11 HSPA+
- DL: 8-Carrier 336 Mbps
- UL: MIMO with 64QAM
3GPP LTE Evolution

- For Rel-8/9 LTE, OFDMA and 4x4 MIMO/64 QAM enables high peak data rate
- For Rel-10 LTE-A, 8x8 MIMO and Carrier Aggregation are the key technologies
- For Rel-11 LTE-A, CoMP improves cell capacity rather than peak data rate

<table>
<thead>
<tr>
<th>Year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H</td>
<td>Rel-8</td>
<td></td>
<td>Rel-9</td>
<td></td>
<td>Rel-10</td>
<td></td>
</tr>
<tr>
<td>2H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rel-8 LTE
- DL: OFDMA, 20MHz
 - 4x4 MIMO, 64QAM
 - **300 Mbps**
- UL: SC-FDMA, 20MHz
 - 64QAM
 - **75 Mbps**

Rel-9 LTE
- DL: e-Dual Layer
 - 300 Mbps
- UL: NA
 - **75 Mbps**

Rel-10 LTE-Advanced
- DL: 8x8 MIMO, CA (100MHz), MU-MIMO, HetNet
 - **1 Gbps (3Gbps)**
- UL: 4x4 MIMO, CA (100 MHz)
 - **500 Mbps (1.5Gbps)**

Rel-11 LTE-A
- DL: CoMP, ePDCCH
 - Hetnet enhanc.
 - **1 Gbps (3Gbps)**
- UL: NA
 - **500 Mbps (1.5Gbps)**

CA: Carrier Aggregation, CoMP: Coordinated Multi-Point Operation
Direction of Evolution

- Peak data rate is not the main goal for the evolution

Directions of evolution: “The Cube”

A set of radio access technologies is required to satisfy future requirements

- Spectrum efficiency
- Traffic offloading
- Network density

Spectrum extension
- Efficient use of higher spectrum bands

Required Performance

[Source: DOCOMO, RWS-120010, 3GPP RAN Workshop, 2012.6]
Main Challenges for the Future

- User QoE decrease and operator cost increase due to mobile traffic growth
- Operator revenue growth slows

1. **QoE Decrease**
 - Users experience network congestions

2. **COST Increase**
 - CAPEX Increase
 - OPEX Increase

3. **Revenue decoupling**

- **Terabytes per Month**
 - **Global Mobile Data Traffic, 2010 to 2015**
 - 92% CAGR 2010-2015
 - Source: Cisco VNI Mobile, 2011

- **Traffic volume**
 - **Voice dominated**
 - Data dominated
 - Source: Light Reading (adapted)

- **Increase Revenue**
- **Decrease Cost**

[Graph showing network congestion and traffic volume over time]
Mobile Traffic

- Major contribution to Mobile Traffic is from Video contents
- OTT providers are consuming the mobile video

Who is using this?

2011 Global Mobile Data BW Usage
[Source: Allot Communication 2011]
3GPP RAN Workshop in June

- TSG-RAN WS on Release 12 Onward, June 11-12, 2012 in Ljubljana, Slovenia
 - 250 participants, 43 presentations
Potential Rel-12/13 RAN WI/SI

Rel-11 Enhancements (15)

- Small cells (7)
 - HetNet Mobility
 - HeNB Part 3
 - LIPA/SIPTO local
- Enhanced antenna techniques (5)
 - Enhanced COMP
 - Further Enhanced DL MIMO
 - 8 Rx Perf. Requirement for UL
- Small data transport enhancements (3)
 - eDDA enhance
 - Small data tx optimise (SI)
- Others (14)
 - New Carrier Type
 - Flexible TDD mode
 - eMBMS enhance
 - Coverage Enhance
 - Next Gen SON (SI)
 - MTC enhancements
 -增值服务
 - MDT enhance
 - MDT extension (SI)

New Technologies (15)

- Small cell requirements (Study Item)
- Small cell enh: L1 (SI)
- Small cell enh: higher layer (SI)
- UL CA enhancements
- 3D-channel model (SI)
- Elevation Beamforming (SI)
- Full-Dimension MIMO (SI)
- MTC enhancements
- D2D proximity discovery (SI)
- Enhanced rcv
- Further Enhanced rcvrs (SI)
- Enh Interference Suppression (SI)
- LTE+UMTS
 - UMTS/LTE Aggregate (SI)
 - LTE/UMTS Iwk (SI)
- 3GPP/WIFI integration (SI)
- Push To Talk (SI)
Three Categories Rel-12 & 13 Features

Enhanced Small Cell
- Frequency separation btw macro and small cells with higher freq. band, e.g. 3.5 GHz
- Inter site CA
- Enhanced discovery / mobility
- Interference management
- Dynamic TDD

Multi-antenna/site technologies
- Inter-eNB CoMP
- 3D channel model
- Vertical beamforming
- FD-MIMO
- Enhanced MU-MIMO

Energy efficient communication
- Diverse traffic type support
- Machine Type Comm
- New Carrier Type
- VoLTE enhancement
- MDT/SON enhancement

Rel-12 & 13 (LTE-Beyond 4G)
Key Features of Rel-12 & 13

- **2009**
 - Rel-8/9
 - LTE

- **2012**
 - Rel-10/11
 - LTE-Advanced (4G)

- **2015**
 - Rel-12/13
 - LTE-Future (?) (Beyond-4G)

Key Features of Rel-12 & 13

- **20MHz, OFDM**
- **SC-FDMA**
- **DL 4x4 MIMO**
- **SON, HeNB**
- **Carrier aggregation**
- **UL 4x4 MIMO**
- **DL/UL COMP**
- **HetNet**

1. Small Cell Enhancement
2. CoMP enhancement
3. FD-MIMO
4. Diverse Traffic support
1. Small Cell Enhancement

- High frequency band (> 3GHz) targeted for small cell enhancement
- Inter eNB Carrier Aggregation is a key solution

<table>
<thead>
<tr>
<th>E-UTRA Band</th>
<th>UL (MHz)</th>
<th>DL (MHz)</th>
<th>Duplex Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3410 – 3490</td>
<td>3510 – 3590</td>
<td>FDD</td>
</tr>
<tr>
<td>42</td>
<td>3400 – 3600</td>
<td>3400 – 3600</td>
<td>TDD</td>
</tr>
<tr>
<td>43</td>
<td>3600 – 3800</td>
<td>3600 – 3800</td>
<td>TDD</td>
</tr>
</tbody>
</table>

Issues in Small Cell Enhancement
- Overhead due to frequent cell change
- Inter-frequency mobility
- Power consumption due to cell discovery
- Need to consider non-ideal backhaul

Small cell in 3.5GHz
- Existing cellular band (coverage, mobility)
- High frequency band (> 3GHz) (high data rate, traffic offloading)

Macro-Pico Inter-eNB CA
- f1
- Macro eNB
- f2
- Pico eNB
- Data rate

Architecture for Macro-Pico
- MME
- S-GW
- Control
- Data
- Anchor to macro
- Big pipe from small cell
2. CoMP Enhancement

- CoMP enhancement for Inter-eNB CoMP with non-ideal backhaul
- Centralized Scheduler is the key feature to enable Inter-eNB CoMP

Rel-12

- Scenario 1: Intra-eNB CoMP in homogeneous deployment
- **Scenario 2:** Inter-eNB CoMP in homogeneous deployment
- **Scenario 3:** Inter-cell CoMP in heterogeneous deployment
- Scenario 4: Distributed antenna system with shared cell ID

Central Scheduler

CQI, SRS measurements, load info, etc..

RB allocation, SRS resource partition

Key Features of Rel-12 & 13
3. Full Dimension MIMO (1/2)

- Full Dimension MIMO (FD-MIMO) is a promising technology for Macro cell capacity improvement.

Full Dimension MIMO with 2D AAS

1) 2D Active Antenna Array (AAA) & up to 64* Tx antenna ports at eNB
2) MU-MIMO with 10s of UEs

* For 2.5GHz carrier frequency. More antenna ports possible for higher frequency.

Macro capacity gain

![Graph showing macro capacity gain with 2D AAS and FD-MIMO eNB](image)

- **Average throughput (b/s/Hz)**: x4.3, x4.49
- **5%-tile throughput (b/s/Hz)**: x6.9, x9.12

![Diagram showing transceiver array panel](image)

AAS: Active Antenna System
Full Dimension MIMO (FD-MIMO) is the next step of Vertical Beamforming.
Expected Performance gain from Rel-12 & 13

Key Features of Rel-12 & 13

- Spectrum Extension
- Capacity
- Network density
- Spectrum Efficiency

- Rel-8/9 LTE
- Rel-10/11 LTE-A
- Rel-12/13 (LTE-B4G)
- Over 6 GHz (?)

- Rel-14/15

Performance gains:
- x 3.53 (FD-MIMO)
- x 1.14 (MU-MIMO)
- x 4.33 (HetNet/CoMP)

- 2 GHz (100MHz)
- 800/900 MHz (70MHz)
- 1.8GHz (40MHz)
- 2.3/2.5 GHz (120 MHz)
- 3.5 GHz (200MHz)
- Over 6 GHz (?)
3GPP SA Workshop in December

- TSG-SA WS on Release 12 Prioritization, December 10, 2012 in Barcelona, Spain
 - 26 presentations are submitted
3GPP SA Workshop

- Key Features for Network Evolution will be indentified

QoE Improvement

Cost Reduction / Revenue Increase

Improve for Delivery of Applications
(Better understanding of application and network)

1. User Plane Congestion management (UPCON)

Features for New Market Potential
(New service enabler)

2. Machine Type and other mobile data applications Comm. Enhancements

Increase Available Bandwidth
(Better offloading / Reduce backhaul usage)

3. WLAN Network Selection for 3GPP Terminals

4. LIPA Mobility and SIPTO at the Local Network
3GPP SA Workshop

- QoE improvement by considering network status at application/service

- RAN congestion status notification to UE/AF
- RAN/PGW selects flows to be controlled
- Traffic Control by application/service based on the notification
A new NGMN Project for Network evolution

- Mobile Video Traffic Optimization is one of the most important projects in NGMN

NGMN Partner Forum

- NGMN TG1 Project Start
- Requirement draft
- White paper Draft
- Final Revision Deliverable

Proposal

2012.11 2013.01 2013.03 2013.06 2013.09 2013.12

<EPS Video Traffic Optimization>

QoE-guaranteed

Best Effort

QoE-aware Scheduling (e.g. deadline)

Free Contents

Premium Contents

<Video Delivery Protocol Enhancement>

Video Transport Protocol: DASH, MMT

Media Adaptation

RAN Info (bit rate, congestion info)

Device Info (Screen-size, Resolution)
Summary

- Many promising technologies have been identified in 3GPP
- Operator and consumer benefit should be carefully considered when new technologies are introduced for Beyond 4G