A BRIEF HISTORY OF UWB ANTENNAS

Hans Gregory Schantz (h.schantz@ieee.org)
Next-RF, Inc.
4811 Cove Creek Drive
Brownsboro, AL 35741

ABSTRACT

This paper provides a historical overview of ultra-wideband antennas presenting some of the key advances at the root of modern designs.

1. INTRODUCTION

“Ultra-wideband” has its roots in the original “spark-gap” transmitters that pioneered radio technology. This history is well known and has been well documented in both professional histories [1-2] and in popular treatments [3]. The development of UWB antennas has not been subjected to similar scrutiny. As a consequence, designs have been forgotten and then re-discovered by later investigators. The present paper aims to fill this void by offering a brief history of UWB antennas.

2. SPARK GAP DAYS

Ironically, the very patent which inaugurated the concept of narrowband frequency domain radio also disclosed some of the first ultra-wideband antennas. In 1898, Oliver Lodge introduced the concept of “syntony,” the idea that a transmitter and a receiver should be tuned to the same frequency so as to maximize the received signal [4]. In this same patent, Lodge discussed a variety of “capacity areas,” or antennas, that will be quite familiar to modern eyes:

“As charged surfaces or capacity areas, spheres or square plates or any other metal surfaces may be employed; but I prefer, for the purpose of combining low resistance with great electrostatic capacity, cones or triangles or other such diverging surfaces with the vertices adjoining and their larger areas spreading out into space; or a single insulated surface may be used in conjunction with the earth, the earth or conductors embedded in the earth constituting the other oppositely-charged surface [5].”

In what is likely the most profound and sweeping sentence in the history of antenna technology, Lodge disclosed spherical dipoles, square plate dipoles, biconical dipoles, and triangular or “bow-tie” dipoles. He also introduced the concept of a monopole antenna using the earth as a ground.

In fact, Lodge’s patent drawings make very clear his preferred embodiments. Figure 1 of the present paper shows Lodge’s second figure in which triangular or bow-tie elements are clearly indicated. Figure 2 of the present paper depicts Lodge’s fifth figure in which biconical antennas are unmistakenly used in a transmit-receive link.

Figure 1: Lodge preferred antennas consisting of triangular “capacity areas,” a clear precursor to the “bow tie” antenna (1898).

Figure 2: Lodge’s biconical antennas (1898)
3. ANTENNAS FOR SHORT WAVES

As frequencies increased and waves became shorter, the economic advantages of a “thin-wire” quarter wave antenna overrode any performance advantages of Lodge’s original designs. With the advent of research into television however, interest in antennas that could handle the much wider bandwidths associated with video signals increased.

This renewed interest in wideband antennas led to the rediscovery of the biconical antenna and conical monopole by Carter in 1939 (see Figures 3a & 3b) [6]. Carter improved upon Lodge’s original design by incorporating a tapered feed (see Figure 4) [7]. Carter was among the first to take the key step of incorporating a broadband transition between a feed line and radiating elements.

Schelkunoff proposed elaborate conical waveguides and feed structures in conjunction with his spherical dipole (see Figure 5) [8-9]. Unfortunately, Schelkunoff’s spherical dipole antenna does not appear to have seen much use.

Perhaps the most prominent UWB antenna of the period was Lindenblad’s coaxial horn element [10-11]. Lindenblad improved on the idea of a sleeve dipole element, adding a gradual impedance transformation to make it more broad banded. RCA chose Lindenblad’s element (seen in cross-section in Figure 6a) for experimental use in television transmission. RCA envisioned multiple channels being broadcast from the same central location, thus a wideband antenna was essential. For several years during the 1930’s, a turnstile array of Lindenblad’s coaxial horn elements graced the top of the Empire State Building in New York City where RCA located its experimental television transmitter. Figure 6B displays a patent drawing of this array. The antennas at the top of the tower in Figure 6b (items 70-72) are folded dipoles used to transmit the audio portion of the television signal. Kraus developed a design similar to Lindenblad’s coaxial horn element and dubbed it a “volcano smoke antenna” [12].

In fact, Lindenblad’s coaxial element came to symbolize the entire television research effort. This UWB antenna has the distinction of being perhaps the only antenna to have been featured prominently on the cover of a mainstream periodical [13].

Figure 3a (left): Carter’s biconical antenna (1939)
Figure 3b (right): Carter’s conical monopole (1939).

Figure 4: Carter’s improved match biconical (1939)

Figure 5: Schelkunoff’s spherical dipole (1940)

Figure 6a (left): Lindenblad’s element in cross-section (1941).
Figure 6b (right): A turnstile array of Lindenbald elements for television transmission (1941).
Other researchers pursued the idea of constructing antennas from coaxial transitions. Brillouin introduced coaxial horns, both omni-directional (as in Figure 7) and directional (as in Figure 8) [14].

Designers also explored other more traditional horn designs during this period. Figure 9 shows one patented by King [15] and Figure 10 depicts another invented by Katzin [16].

More recent developments include a variety of more sophisticated electric antennas. Stohr proposed the use of ellipsoidal monopoles and dipoles as shown in Figures 12 a & b [20].
Harmuth suggested another improved magnetic antenna by introducing the concept of the large current radiator shown in Figure 15 [27]. Ideally, this magnetic antenna looks like a current sheet. Because the sheet will radiate from both sides, designers typically employ a lossy ground plane to limit undesired resonances and reflections. This tends to limit the efficiency and performance of large current radiators.

Barnes pioneered a novel UWB slot antenna [28-30]. Barnes’s slot antenna (shown in Figure 16) maintains a continuous taper. The Time Domain Corporation’s first generation through-wall radar, the RadarVision 1000, utilized this antenna. With proper design of the slot taper, excellent broadband matching and performance can be obtained.

Significant advances have also been made in magnetic UWB antennas [25]. Marié took the concept of a slot antenna and improved its bandwidth by varying the width of the slot line [26]. Figure 14 displays Marié’s antenna.
6. CONCLUSIONS

The past century witnessed the development of an incredibly wide variety of UWB antennas. This paper highlights a few particularly noteworthy UWB antennas as a starting point for further explorations.

7. REFERENCES