

Is it a bird? .. a plane?

Jens Zander Scientific Director, Wireless@KTH KTH – The Royal Institute of Technology, Stockholm, Sweden

Outline

• Why do we need 5G ?

- Transparency & mobile data tsunami
- Things that communicate & the Internet of Senses

Are there <u>Scalable</u> Infrastructure Solutions ?

- The two worlds or are they three ?
- The Resource Triangle: Cost, Energy, Spectrum
- What are the technologies we should be looking for ?

Key trend 1: Transparency eats efficiency for breakfast

Why do we have a Data Tsunami? Dominant designs

- Internet access + Cloud based solution = the Dominant Design for all application involving communication – since 2007 also on mobile
- Simple interface IP for all "apps" creates explosive growth – works on all platforms
- Inefficient for (almost) all applications: we buy flexibility at the expense of large data volumes data
- Other specific communication technologies (e.g. P2P, Multi-hop) and "one trick ponies" (e.g Broadcast Radio/TV) become marginalized

"IP is the answer - now, what was the question ?"

G Q Maguire

The price tag for transparency – the <u>Mobile</u> Data avalanche (as seen in 2010)

Exponential growth Assumes **zero marginal cost** for access How long can this be sustained ?

Operator dilemma: More for less money

- Spending capability of user increases with GNP growth (<10% annually)
- Capacity requirements increase by 80-100% annually

$$C_{SYS} = c_{BS} N_{BS}$$

Challenge: 1000x lower cost/bit

Cellular traffic estimates now more modest

Global mobile traffic (monthly ExaBytes)

- Market saturation ?
 - Everyone has a smartphone?
- Volume based charging ?
 - "Buckets" instead of "all-you-can-eat"
- Bulk of the traffic off-loaded elsewhere ?
 - WiFi

Source: Ericsson Mobility Report, Nov 2014

Key trend 2: Things that communicate & the Internet of Senses

Things that communicate

Internet of Things

- Billions of devices
- Low power
- Low cost
- High reliability
- Low delay

4G not a scalable solution SIM-cards in every device ?

"The internet of senses" (a.k.a. "The Tactile Internet")

Mission critical communication (Super real-time, super reliable...)

Source: The Economist, April 20th, 2013

SEVENTH FRAMEWORK PROGRAMME

Is there (one) Scalable Infrastructure Solution ?

How to increase capacity ?

$$R_{tot} \approx \frac{\eta}{A} N_{BS} W_{sys}$$
 Gbit/s/m

$$C_{SYS} = c_{BS}N_{BS} + c_{sp}W_{sys} + c_{E}E_{sys}(\eta, N_{BS}, W_{sys})$$

- Increase η , spectral efficiency (signal processing)
 - Close to theoretical limits
 - More power (TX power, processing, receivers)
- More base stations, N_{BS}
 - Expensive
 - More power ?
- More spectrum, W_{SYS}
 - Shortage ?

How to lower the cost: "HET NET"s – deploy according to demand

The Light Analogy I : HET NETs

Outdoor - Wide Area

• Indoor – Short Range

A World Divided

The coverage world

Industry grade equipment High power/Wide area 24-7 availabilty High **system** complexity

The capacity world

Consumer grade equipment Low power/Short range Reliability through redundancy Low **system** complexity

A World Divided

The coverage world

Public operators

- Access any-time, anywhere
- "Insurance" guaranteed access at moderate datarates (<10Mbit/s)
- Monthly fee
- Power/Site/Backhaul
- Exclusive spectrum licensing spectrum sharing

The capacity world

Facility owners

- Local access "off-loading"
- Sanitary requirement / no charge
- User experience high data rates
- Ultra dense deployment Interference
- Low power, "no" site cost, existing backhaul
- Post-code licensing infrastructure sharing

Capacity and Economic feasibility

More access points - or more expensive backhaul (for coordination)?

Is there enough capacity ?

	Intersite	Spectrum	No BS	Cap/Site	Area cap
Macro	300 m	500 MHz	10 /km ²	1Gb/s	10 Gb/s/km ² (outdoor)
WiFi - today	30m	500 MHz	1000/km ²	1 Gb/s	1 Tb/s/km ²
WiFi -ideal	1/room	2 GHz	50K/km ²	4 Gb/s	200 Tb/s/km ²

Simple area-based calculation - outdoor/indoor wall penetration not included

Where are we heading - spectrumwise?

Wide-Area outdoor

- Large, long-term infrastructure ٠ investments (>> spectrum cost)
- Low frequencies (<3 GHz) ٠
- Wide coverage \rightarrow interference . with other services

Exclusive licensing

Mobile short range, indoor

- Low/moderate investment
- Moderate frequencies (3-30 GHz)
- Indoor Short range → limited interference with other services

Vertical / Horizontal sharing?

veruser uvuseren Access? Exclusive - LSS - Open Access?

Millimeter-Wave, short range, indoor

- Low investment
- High frequencies (>30 GHz)
- Very short range \rightarrow very limited ٠ interference with other services

Open Access

Where are we heading - spectrumwise?

Wide area access

Spectrum need to lower infrastructurecost Block-licensed spectrum to match long-term RF-specific investment (<3 GHz)

Repurposing of UHF from TV -> IP access

• Digital dividends 800, 700, 600 MHz etc

Short range access

Plenty of potential spectrum <10 GHz Higher frequencies (>3 GHz) for high capacity (lower interference) Local & temporal spectrum regimes (National Block-licensing inefficient)

Unlicensed, Secondary, LSA, "Instant licensing"

Infrastructure vs Spectrum Sharing ?

Key Trends in spectrum sharing

Today	Tomorrow
Transmitter specification	Receiver specification
Interference Limits	"Pain Sharing
Secondary access	Sharing / Co-primary

Can the Things use the same infrastrucure ?

Very diverse requirements

Requirement	Human centric	Machine Type
Capacity	Very Large	Small
Number of devices	Moderate	Very large
Wide area coverage	Important	(Sometimes) Important
Reliability	Moderate	(Sometimes) High
Cost	Moderate	(Sometimes) Very low
Power consumption	Moderate	Sometimes) Very low
Delay	Moderate	Sometimes) Very low

Everything under one roof ? Transparancy vs Efficiency

The IP-access world

- Large volumes of standardized equipment, unified platforms
- Low efficiency, overprovisioning of resources
- Willingness to pay for flexibility

The MTC world

- Large volumes
- Very diverse requirement on power, delay, cost...
- Non-standardized equipment, no unified platforms
- Rational decisions based on savings

Single infrastructure = traditional operator model ?

Mobility Foresigth

In Summary: Fundamental/revolutional 5G challenges

- Addressing the Internet-of-Important Things:
 - Scalable, low power, low-cost super-reliable wide-area
 - Extreme low latency
 - Distribution of computational resources

- Spectrum/Infrastructure sharing concepts
- "Plug-and-play" ultradense

In Summary

5G is

- Not technically needed to contain most of the "Data Tsunami" (can be managed by evolved 4G +WiFi)
- Addressing new challenges in large scale, widearea infrastructure for M2M applications
- Not only about connectivity but a computational platform to manage generic resources like processing and storage
- Important to the incumbent industry to show renewal and claim (exclusive) spectrum to sustain current business modell

Read more !

wireless.kth.se

johannesbergsummit.com

Log

Technology Neutral Spectrum Assignment - a nice

concept but is it realistic ?

theunwiredpeople.com

Recent Posts

Technology Neutral Spectrum

Assignment - a nice concept but

